Galaxycore announces dual analog gain HDR CIS

Image Sensors World        Go to the original article...

Press release:

GalaxyCore Unveils Industry's First DAG Single-Frame HDR 13Megapixels CIS


GalaxyCore has officially launched the industry's first 13megapixels image sensor with Single-Frame High Dynamic Range (HDR) capability – the GC13A2. This groundbreaking 1/3.1", 1.12μm pixel back-illuminated CIS features GalaxyCore's unique Dual Analog Gain (DAG) circuit architecture, enabling low-power consumption 12bit HDR output during previewing, photography, and video recording. This technology enhances imaging dynamic range for smartphones, tablets, and more, resulting in vividly clear images for users.

The GC13A2 also supports on-chip Global Tone Mapping, which compresses real-time 12bit data into 10bit output, preserving HDR effects and expanding compatibility with a wider range of smartphone platforms.

High Dynamic Range Technology

Dynamic range refers to the range between the darkest and brightest images an image sensor can capture. Traditional image sensors have limitations in dynamic range, often failing to capture scenes as perceived by the human eye. High Dynamic Range (HDR) technology emerged as a solution to this issue.

Left Image: blowout in the bright part resulting from narrow dynamic range/Right Image: shot with DAG HDR

Currently, image sensors use multi-frame synthesis techniques to enhance dynamic range:
Photography: Capturing 2-3 frames of the same scene with varying exposure times – shorter exposure to capture highlight details and longer exposure to supplement shadow details – then combining them to create an image with a wider dynamic range.

Video Recording: Utilizing multi-frame synthesis, the image sensor alternates between outputting 60fps long-exposure and short-exposure images, which the platform combines to produce a 30fps frame with preserved highlight color and shadow details. While multi-frame synthesis yields noticeable improvements in dynamic range, it significantly increases power consumption, making it unsuitable for prolonged use on devices like smartphones and tablets. Moreover, it tends to produce motion artifacts when capturing moving objects.

Left Image: shot with Multi-Frame HDR (Motion Artifact) Right Image: shot with DAG HDR

GalaxyCore's Patented DAG HDR Technology

GalaxyCore's DAG HDR technology, based on single-frame imaging, employs high analog gain in shadow regions for improved clarity and texture, while low analog gain is used in highlight parts to prevent overexposure and preserve details. Compared to traditional multi-frame HDR, DAG HDR not only increases dynamic range and mitigates artifact issues but also addresses the power consumption problem associated with multi-frame synthesis. For instance, in photography, scenes that used to require 3-frame synthesis are reduced by 50% when utilizing DAG HDR.

Left Image: Traditional HDR Photography Right Image: DAG HDR Photography

GC13A2 Empowers Imaging Excellence with HDR

Empowered by DAG HDR, the GC13A2 is capable of low-power 12bit HDR image output and 4K 30fps video capture. It reduces the need for frame synthesis during photography and lowers HDR video recording power consumption by approximately 30%, while avoiding the distortion caused by motion artifacts.

Compared to other image sensors of the same specifications in the industry, GC13A2 supports real-time HDR previewing, allowing users to directly observe every frame's details while shooting. This provides consumers with an enhanced shooting experience.

GC13A2 has already passed initial verification by brand customers and is set to enter mass production. In the future, GalaxyCore will introduce a series of high-resolution DAG single-frame HDR products, including 32Megapixels and 50Megapixels variants. This will further enhance GalaxyCore’s high-performance product lineup, promoting superior imaging quality and an enhanced user experience for smartphones.

Go to the original article...

MDPI IISW2023 special issue – 316MP, 120FPS, HDR CIS

Image Sensors World        Go to the original article...

A. Agarwal et al. have published a full length article on their IISW 2023 conference presentation in a special issue of MDPI Sensors. The paper is titled "A 316MP, 120FPS, High Dynamic Range CMOS Image Sensor for Next Generation Immersive Displays" and is joint work between Forza Silicon (AMETEK Inc.) and Sphere Entertainment Co..

Full article (open access):

We present a 2D-stitched, 316MP, 120FPS, high dynamic range CMOS image sensor with 92 CML output ports operating at a cumulative date rate of 515 Gbit/s. The total die size is 9.92 cm × 8.31 cm and the chip is fabricated in a 65 nm, 4 metal BSI process with an overall power consumption of 23 W. A 4.3 µm dual-gain pixel has a high and low conversion gain full well of 6600e- and 41,000e-, respectively, with a total high gain temporal noise of 1.8e- achieving a composite dynamic range of 87 dB.

Figure 1. Sensor on a 12 inch wafer (4 dies per wafer), die photo, and stitch plan.

Figure 2. Detailed block diagram showing sensor partitioning.

Figure 3. Distribution of active and dark rows in block B/H, block E, and final reticle plan.

Figure 5. Sensor timing for single-exposure dual-gain (HDR) operation.

Figure 6. Data aggregation and readout order for single-gain mode.

Figure 7. Data aggregation and readout order for dual-gain mode.

Figure 8. ADC output multiplexing network for electrical crosstalk mitigation.

Figure 9. Conventional single-ended ADC counter distribution.

Figure 10. Proposed pseudo-differential ADC counter distribution.

Figure 11. Generated thermal map from static IR drop simulation.

Figure 12. Measured dark current distribution.

Figure 13. SNR and transfer function in HDR mode.

Figure 14. Full-resolution color image captured in single-gain mode at 120 FPS.

Go to the original article...

Videos du jour — onsemi, CEA-Leti, Teledyne e2v [June 7, 2023]

Image Sensors World        Go to the original article...


Overcoming Challenging Lighting Conditions with eHDR: onsemi’s AR0822 is an innovative image sensor that produces high-quality 4K video at 60 frames-per-second.

Discover Wafer-to-wafer process
: Discover CEA-Leti expertise in terms of hybrid bonding: the different stages of Wafer-to-wafer process in CEA-Leti clean room, starting with Chemical Mechanical Planarization (CMP), through wafer-to-wafer bonding, alignment measurement, characterization of bonding quality, grinding and results analysis.


Webinar - Pulsed Time-of-Flight: a complex technology for a simpler and more versatile system: Hosted by Vision Systems Design and presented by Yoann Lochardet, 3D Marketing Manager at Teledyne e2v in June 2022, this webinar discusses how, at first glance, Pulsed Time-of-Flight (ToF) can be seen as a very complex technology that is difficult to understand and use. That is true in the sense that this technology is state-of-the-art and requires the latest technical advancements. However, it is a very flexible technology, with features and capabilities that reduce the complexity of the whole system, allowing for a simpler and more versatile system.

Go to the original article...

Gpixel announces new global shutter GSPRINT 4502 sensor

Image Sensors World        Go to the original article...

Gpixel press release on August 17, 2022:

Gpixel expands high-speed GSPRINT image sensor series with a 2/3” 2.5 MP 3460 fps global shutter GSPRINT4502

Gpixel announces a high-speed global shutter image sensor, GSPRINT4502, a new member of the GSPRINT series taking high speed imaging to another level.

GSPRINT4502 is a 2.5 Megapixel (2048 x 1216), 2/3” (φ10.7 mm), high speed image sensor designed with the latest 4.5 µm charge domain global shutter pixel. It achieves more than 30 ke- charge capacity and less than 4 e- rms read noise, with dynamic range of 68 dB which can be expanded using a multi-slope HDR feature. Utilizing an advanced 65 nm CIS process with light pipe and micro lens technology, the sensor achieves >65% quantum efficiency and < -92 dB parasitic light sensitivity.

GSPRINT4502 can achieve extremely high frame rates up to 3460 fps in 8-bit mode, 1780 fps in 10-bit mode or 850 fps in 12-bit mode, all at full resolution. With 2×2 on-chip charge binning, full well capacity can be further increased to 120 ke- and frame rate to 10,200 fps. GSPRINT4502 supports vertical and horizontal regions of interest for higher frame rates. GSPRINT4502 is perfect for high-speed applications including 3D laser profiling, industrial inspection, high speed video and motion analysis.

Data output from GSPRINT4502 is through 64 pairs sub-LVDS channels running 1.2 Gbps each. Flexible output channel multiplex modes make it possible to reduce frame and data rate to make the sensor compatible with all available camera interface options. GSPRINT4502 is packaged in a 255-pin uPGA ceramic package and will be offered in sealed and removable glass lid versions.

“The market reaction to the GSPRINT high-speed image sensor family provides evidence that a growing number of applications require higher frame rates,” said Wim Wuyts, Chief Commercial Officer of Gpixel. “We are excited to continue to expand the portfolio to bring these high frame rates to more applications.”

GSPRINT4502 engineering samples can be ordered today for delivery in October, 2022. 

About the GSPRINT sensor family

The GSPRINT series is Gpixel’s high-speed global shutter product family, including the 21 MP GSPRINT4521, 10 MP GSPRINT4510 and 2.5 MP GSPRINT4502. The GSPRINT technology will be used to expand the sizes and resolutions available in the family in the future. To learn more about the GSPRINT series, please contact us at:

About Gpixel

Gpixel provides high-end customized and off-the-shelf CMOS image sensors for industrial, professional, medical, and scientific applications. Gpixel’s standard products include the GMAX and GSPRINT global shutter, fast frame rate sensors, the GSENSE and GLUX high-end scientific CMOS image sensor series, the GL series of line scan imagers, the GLT series of TDI line scan imagers and the GTOF series of iTOF imagers. Gpixel’s broad portfolio of products utilizes the latest technologies to meet the ever-growing demands of the professional imaging market.

Go to the original article...

PhD Thesis on Dynamic Range Improvements

Image Sensors World        Go to the original article...

A PhD thesis titled "Proposal of Architecture and Circuits for Dynamic Range Enhancement of Vision Systems on Chip designed in Deep Submicron Technologies" by from Universidad de Sevilla is now available to the public. The thesis is by Sonia Vargas Sierra who did this work at the Image Sensor group of Microelectronic Institute of Seville.

Although the thesis is from a few years ago, some of the content in the thesis may be of interest now due to recent developments in vertical integrated technologies.

From the Preface:

The work presented in this thesis proposes new techniques for dynamic range expansion in electronic image sensors. Since Dynamic Range (DR) is defined as the ratio between the maximum and the minimum measurable illuminations, the options for improvement seem obvious; first, to reduce the minimum measurable signal by diminishing the noise floor of the sensor, and second, to increase the maximum measurable light by increasing the sensor saturation limit.

In our case, we focus our studies to the possibility of providing DR enhancement functionality in a single chip, without requiring any external software/hardware support, composing what is called a Vision-System-on-Chip (VSoC). In order to do so, this thesis covers two approaches. Chronologically, our first option to improve the DR relied on reducing the noise by using a fabrication technology that is specially devoted to image sensor fabrication, a so-called CMOS Image Sensor (CIS) technology. However, measurements from a test chip indicated that the dynamic range improvement was not sufficient to our purposes (beyond the 100dB limit). Additionally, the technology had some important limitations on what kind of circuitry can be placed next to the photosensor in order to improve its performance. Our second approach has consisted in, first, designing a tone mapping algorithm for DR expansion whose computational needs can be easily mapped onto simple signal conditioning and processing circuitry around the photosensor, and second, designing a test chip implementing this algorithm in a standard CMOS technology.

This thesis is organized in five chapters. Chapter 1 describes the main concepts involved in image sensors focusing in High Dynamic Range (HDR) operation. Chapter 2 presents the study of an image sensor optimized technology in order to be considered for dynamic range improvement techniques. Chapter 3 describes an innovative tone mapping algorithm used to optimize the compression of HDR scenes. Chapter 4 introduces the image sensor chip that has been designed and fabricated, which implements the new tone mapping algorithm. Chapter 5 shows the experimental results and evaluation of the performance of the chip. 

Link to download thesis pdf:

A couple of references related to the topic of this thesis: 
  1. S. Vargas-Sierra et al., "A 151 dB high dynamic range CMOS image sensor chip architecture with tone mapping compression embedded in-pixel", IEEE Sensors J. Jan. 2015. 
  2. Mori et al., "A 4.0 μm Stacked Digital Pixel Sensor Operating in a Dual Quantization Mode for High Dynamic Range," IEEE TED June 2022 issue.

Go to the original article...

SmartSens 50MP Ultra-High-Resolution Image Sensor

Image Sensors World        Go to the original article...

SmartSens has launched an ultra high resolution image sensor based on a 22nm process. SC550XS is their first 50MP ultra-high resolution image sensor with a 1.0μm pixel size. The new product adopts the advanced 22nm HKMG Stack process as well as SmartSens’ multiple proprietary technologies, including SmartClarity®-2 technology, SFCPixel® technology and PixGain HDR® technology to enable excellent imaging performance. In addition, it can achieve 100% all pixel all direction auto focus coverage via AllPix ADAF® technology and is equipped with MIPI C-PHY 3.0Gsps high-speed data transmission interface. The product is designed to address the requirements of flagship smartphone main camera in terms of night vision full-color imaging, high dynamic range, and low power consumption.

Full press release:

Go to the original article...