Image Sensors World Go to the original article...
KT Imaging patent holding company believes that a number of companies infringed on its image sensor packaging patents. So, KT Imaging files the lawsuits against Apple, Microsoft, Google, Dell, Samsung, HP, AsusTek, Acer, etc.Archives for September 2021
KT Imaging Files Patent Lawsuits against Apple, Microsoft, Google, Samsung, etc.
Gpixel Releases World’s Highest Resolution Global Shutter CMOS Sensor
Image Sensors World Go to the original article...
Gpixel expands the GMAX product family of global shutter image sensors with the 152 MP GMAX32152, the highest resolution global shutter CMOS sensor commercially available in the market.
This latest GMAX sensor incorporates a 3.2 µm charge domain global shutter pixel in a 16556 (H) x 9200 (V) array for an imaging area of 53 mm x 29.4 mm (60.6 mm diagonal). The 1.8:1 wide aspect ratio optimizes the inspection of flat panel displays of similar format and increases the efficiency of large field of view aerial mapping applications.
GMAX32152 shares a common pixel and read-out architecture with the 103 MP GMAX32103, achieving the same full well capacity of 9.4 ke- and a read noise of 4 e- for a dynamic range of 67.6 dB.
The read out of image data is accomplished using 38 pairs of sub-LVDS channels each operating at 960 MHz delivering a full resolution frame rate of 16 fps at 12bit output and total aggregate data rate of 36.48 Gbps.
This sensor is provided in monochrome and RGB Bayer color options. Monochrome and RGB color engineering samples can be ordered today for delivery in October 2021, production release is expected by mid 2022.
Sony Unveils UV-Optimized Image Sensor
Image Sensors World Go to the original article...
Pixel with Nearly Unity-Gain SF
Image Sensors World Go to the original article...
IEEE Sensors publishes a video presentation of Xiaoliang Ge and Albert Theuwissen (Delft University) paper "A CMOS Image Sensor with Nearly Unity-Gain Source Follower and Optimized Column Amplifier."
"This paper presents a CMOS image sensor with in-pixel nearly unity-gain pMOS transistor based source followers and optimized column-parallel amplifiers. The prototype sensor has been fabricated in a 0.18 µm CMOS process. By eliminating the body effect of the source follower transistor, the voltage gain for the pixel-level readout circuitry approaches unity. The use of a single-ended common-source cascode amplifier with ground rail regulation improves the PSRR of the column-parallel analog front-end circuitry and further the noise performance. The prototype sensor with proposed readout architecture reaches a 1.1e- input-referred temporal noise with a column-level ×16 analog gain."
Syntiant Partners with Pixart on Low Power Always-On Applications
Image Sensors World Go to the original article...
GlobeNewswire: Competing with Himax WiseEye always-on IoT platform, Pixart partners with Syntyant neural processing startup to come up with a joint low power vision platform.IntoPIX Announces IP Cores for 10x Raw Image Data Compression
Image Sensors World Go to the original article...
BusinessWire: IntoPIX announces the extension of its range of TICO RAW IP-cores supporting additional pixel per clock architectures to target more devices and more sensor types.
Integrated on ASIC or in small FPGAs, these IP-cores cover the most popular CFA Bayer patterns, sensor bit-depths from 10 up to 16 bits and resolutions from 1MP up to 100MP.
TICO-RAW is the new RAW. It preserves access to the control over white balance, exposure and color grading with the world's best efficiency. “The continued use of regular RAW files means that the ultimate image quality can’t be maintained without creating monster-size files or using too much bandwidth,” explains Jean-Baptiste Lorent, Marketing and Sales Director at intoPIX. With 10 times less bandwidth required and 10 times less storage needed compared with those of regular RAW, TICO-RAW offers a high speed and low complexity.
“NIKKOR – The Thousand and One Nights (Tale 79) has been released”
Canon Inc. completes acquisition of Redlen Technologies as a wholly owned subsidiary
Strategy Analytics on H1 2021 Smartphone CIS Market
Image Sensors World Go to the original article...
Strategy Analytics estimates that Sony has captured 42% smartphone CIS market share in H1 2021 and 41% in Q2 2021. The whole smartphone CIS market grew 10% YoY in H1:Low Noise SPAD in 180nm Process
Image Sensors World Go to the original article...
IEEE Journal of Selected Topics in Quantum Electronics publishes EPFL and KIST paper "A Low-noise CMOS SPAD Pixel with 12.1 ps SPTR and 3 ns Dead Time" by Francesco Gramuglia, Ming-Lo Wu, Claudio Bruschini, Myung-Jae Lee, and Edoardo Charbon.Galaxycore 12-inch BSI Facility to Start Production in 2 Years
Image Sensors World Go to the original article...
Laoyaoba: Galaxycore says on the investor interaction platform that the company's 12-inch CIS BSI facility construction is progressing smoothly, and the main building has been capped on August 16. The company expects to start the production in 2 years. The fab capacity is 20,000 wafers per month.
In 2018, 2019 and 2020, the gross profit margin of Galaxycore's CMOS sensors was 25.32%, 27.50% and 28.54%, respectively which is similar to or even higher than that of its competitors. Galaxycore is confident in the competitiveness of its new high-end products in development now.
Open Letter from Junichi Nakamura, New President of the International Image Sensor Society
Image Sensors World Go to the original article...
Open Letter from the New PresidentDear all,
This time, I was elected as a new President of International Image Sensor Society (IISS) by the IISS Board of Directors at the Board meeting just after the 2021 International Image Sensor Workshop (IISW) closure. It is my great pleasure and honor to serve as President of IISS and I will try my best to improve services of IISS/IISW.
As was mentioned at the very beginning of the 2021 IISW by Johannes Solhusvik, the General Chair of the 2021 IISW, the key concept of the IISW is to provide an opportunity to exchange the latest progress in image sensor and related R&D activities to the top image sensor technologists in the world in an informal atmosphere. This concept was conceived by Eric Fossum, the Founder of this series of workshop, at the very first workshop in 1986 (named “IEEE Workshop on CCDs”), and has been realized and enhanced by the three former Presidents of IISS, Eric, Nobukazu Teranishi and Albert. This will be kept in the future workshop.
With the retirement of Eric, Nobu and Albert from the Board, the Board of Directors has invited three very strong image sensor technologists to the Board, namely, Boyd Fowler (OmniVision, USA), Robert Henderson (University of Edinburgh, UK) and Yusuke Oike (Sony, Japan). Please join me in welcoming them to the Board of IISS.
Finally, I would like to express my sincere gratitude to the three Co-Founders/former Presidents of IISS for their enthusiasm to “bring the imaging community to a higher level”. The IISS Directors will inherit this spirit. I hope Eric, Nobu and Albert can continue giving us any suggestions and insights as members of the newly established Governance Advisory Committee.
Best regards,
Junichi Nakamura
President of IISS
STA Founder Dick Bredthauer Passed Away
Image Sensors World Go to the original article...
As posted in CCD-World mailing list, Semiconductor Technology Associates, Inc. founder Dick Bredthauer passed away.
Dr. Richard Bredthauer was involved in the design and fabrication of a large variety of scientific imaging CCDs from 1975 to 2016. He managed CCD development at Lockheed Martin, Loral, Ford Aerospace, and Rockwell. He designed the original 9k x 9k imager while at Lockheed Martin, and his CCDs included notable instruments such as Hubble’s WFPC2, all of the visible imagers on Cassini, the stereo camera in Mars Pathfinder, and most recently the lightning imager for GOES-R. In 2016, his son Dr. Greg Bredthauer became president of STA and took over daily operations.
Open Letter from Albert Theuwissen
Image Sensors World Go to the original article...
OPEN LETTER TO THE INTERNATIONAL IMAGE SENSOR SOCIETY.Dear all,
Yesterday (Thursday 23/09/2021) the International Image Sensor Workshop 2021 came to an end. Immediately after the workshop closure we had a meeting with the Board of Directors of the International Image Sensor Society. In that meeting Eric Fossum, Nobukazu Teranishi and Albert Theuwissen (the three co-founders of IISS) announced their retirement from the Board. The retired members will set up a Government Advisory Committee (without any voting rights anymore), but they will be no longer directly involved in the organization of the IISW.
If I speak for myself : it was a great honour and even a greater pleasure for me to work for and to work with Eric, Nobu and all other Board members. This is a group of people that constantly tries to bring the imaging community to a higher level. Imaging has given and still gives me a lot of joy, motivation, strength in my professional live and last but not least also in my private life it brought us a nice piece of bread on our table. So for me it was very normal to give something back to our imaging community by means of my activities in IISS.
Over the years I learned a lot from my involvement in IISS, about how to work with various cultures, how to work with world-level top-experts in the field and how to work with individuals that all have a strong character (otherwise they would not have climbed up to the level where they now are). And very often the cooperation with my Board colleagues put myself in front of the mirror which led to some self-reflection.
I wish IISS and all Board members all the best in the coming future. It is now up to the next generation to manage IISS and I am more than confident that the next generation will succeed. But if needed, they always can count on me for advice.
Best regards from Belgium.
Albert, former president of IISS.
24/09/2021.
IDQ Photon Sensors – from Mobile Phones to Space Launchers
Image Sensors World Go to the original article...
Galaxycore Evaluates its 32MP Sensor Engineering Samples
Image Sensors World Go to the original article...
DailyEconomicNews: In line with its intentions to penetrate mid- to high-end CIS market, Galaxycore announces at the investor interactive platform on September 24: "Dear investors, hello. The company's high-end pixel research and development is progressing smoothly, and the CMOS image sensor with 32 million pixels and above has entered the stage of internal evaluation of engineering samples. Thank you for your attention!"
Smartsens Announces Three BSI Global Shutter Sensors
Image Sensors World Go to the original article...
CoreIntelligence: SmartSens launches three new SmartGS-2 series image sensors-SC350HGS / SC650HGS / SC950HGS with 3MP to 9MP resolutions aimed to industrial cameras for intelligent applications. the QE of the three products reaches 90% at 520nm.
Samples of the three sensors are available now, and mass production is expected to start in Q4 2021.
Excess Noise Reduction in APDs
Image Sensors World Go to the original article...
IEEE Journal of Selected Topics in Quantum Electronics publishes a paper "Evolution of Low-Noise Avalanche Photodetectors" by Joe C. Campbell from University of Virginia.
"This paper reviews materials and structural approaches that have been developed to reduce the excess noise in avalanche photodiodes and increase the gain-bandwidth product."
Assorted Videos: Trinamix, Vision Research, Immervision, Teledyne-e2v, Cepton
Image Sensors World Go to the original article...
Trinamix expands its multispectral 3D imaging applications with smartphone behind OLED face recognition and driver monitoring:SPADs in Globalfoundries’ 55nm BCD Process
Image Sensors World Go to the original article...
It appears that Globalfoundries becomes a viable option for SPAD-based sensors. At least, three Globalfoundries' employees are co-authors of the following paper:PAM4 in Image Sensor-based Communication
Image Sensors World Go to the original article...
PAM4 signalling has been adopted in many recent high speed interfaces, such as PCIe 6.0, MIPI A-PHY, Auto-Serdes, and many others. In the following OSA paper, PAM4 is being proposed for image sensor based communication:PAM4 in Image Sensor-based Communication
Image Sensors World Go to the original article...
PAM4 signalling has been adopted in many recent high speed interfaces, such as PCIe 6.0, MIPI A-PHY, Auto-Serdes, and many others. In the following OSA paper, PAM4 is being proposed for image sensor based communication:Announcement of the Grand Prize winners of the Nikon Photo Contest 2020-2021
Nikon introduces the MONARCH M5 Binoculars
Nikon introduces the MONARCH M7 Binoculars
New Imaging Technologies Video
Image Sensors World Go to the original article...
New Imaging Technologies (NIT) presents its SWIR and HDR sensors in this video:Galaxycore CEO on Growth of China Semiconductor Industry
Image Sensors World Go to the original article...
PerceptionCoreVision publishes a transcript of Galaxycore CEO Zhao Lixin (Stanly Zhao) talk at the 2nd Shanghai Free Trade Zone Lingang New Area Semiconductor Industry Development Forum held on September 15, 2021. Few quotes:
"China has a lot to do in the development of image sensors. From the perspective of sales volume, Galaxycore plus Omnivision's CIS shipments account for more than 50% of the world; from the perspective of value, Gekewei’s 1 billion plus Howe 2 billion, accounting for about 16% of the global 20 billion CIS market.
I often proudly say that our Galaxycore is good. Why is Galaxycore good? We, Galaxycore, were the largest domestic customer of SMIC, the largest foundry in China in 2007. During the financial crisis in 2008, we placed an order of 100,000 8-inch wafers for SMIC. Of course, we were surpassed by HiSilicon, because HiSilicon was too powerful.
Before that, Galxycore has been the top four customers of SMIC, and we are also the major customers of packaging factories such as Changjiang Electronics, Jingfang and Huatian. Therefore, only after you have a large scale can you promote the national economy and support the development of this industry. Therefore, I put a lot of emphasis on the shipment volume of a wafer, the Internet emphasizes traffic, and semiconductor companies must emphasize the use of silicon wafers. Galaxycore currently ranks among the top three in terms of silicon wafer usage in China.
The second is to focus on high-end, because only ICs on high-end brand mobile phones have sufficient scale and profits. Without profit, there is no way to do high-end R&D. Therefore, to drive the development of the entire industry chain in China, there must be sufficient profits. Just like a company like Huawei, its high-end mobile phone camera supports three world-renowned companies, Sony, Largan and Sunny. So it can feed so many people with a single chip. But if you can't do high-end, it is unlikely to be profitable.
The development of China's semiconductor industry still requires the use of mobile phones to drive our chip design companies. Design companies drive Foundry factories, packaging factories, and then equipment manufacturers and material manufacturers.
Why can Galaxycore do well? Because Galaxycore is unique in process research and development. Therefore, in order to speed up the research and development of high-end products, we must build our own factories to do the research and development of special processes. Now Lingang is a very good place, so we invested 2.2 billion US dollars in Lingang to build a world's most advanced characteristic process line.
Based on this sales data of Galaxycore, I will tell you about our development history. You can see that from 2006 to 2007, it was the research and development period. In 2008, a large number of shipments were made. In 2009, despite the financial crisis, our business doubled.
In 2014, we made about 340 million U.S. dollars. At this time, we were stuck overseas because we couldn't make BSI crafts. Because the neck of BSI was stuck, we couldn't make high-end products. Then we will cooperate with Samsung around 2016 and 2017 to make our BSI products. At this time, the company's performance is developing by leaps and bounds. Last year we approached 1 billion US dollars.
When there is a breakthrough in research and development, this performance is relatively easy to grow rapidly, and the shipment volume is also amazing. We have achieved shipments of nearly 2.4 billion units. With this scale, we will be able to do more high-end designs later."
Samsung 200MP Sensor Video
Image Sensors World Go to the original article...
Samsung publishes a promotional video about its 200MP HP1 sensor:
Dark Current Reduction in Small Pixels
Image Sensors World Go to the original article...
Seoul National University of Science and Technology publishes a MDPI paper "Reduction of Fluorine Diffusion and Improvement of Dark Current Using Carbon Implantation in CMOS Image Sensor" by Su-Young and Sung-Hoon Choa.
"Recently, the demand of a high resolution complementary metal-oxide semiconductor (CMOS) image sensor is dramatically increasing. As the pixel size reduces to submicron, however, the quality of the sensor image decreases. In particular, the dark current can act as a large noise source resulting in reduction of the quality of the sensor image. Fluorine ion implantation was commonly used to improve the dark current by reducing the trap state density. However, the implanted fluorine diffused to the outside of the silicon surface and disappeared after annealing process. In this paper, we analyzed the effects of carbon implantation on the fluorine diffusion and the dark current characteristics of the CMOS image sensor. As the carbon was implanted with dose of 5.0 × 10^14 and 1 × 10^15 ions/cm2 in N+ area of FD region, the retained dose of fluorine was improved by more than 131% and 242%, respectively than no carbon implantation indicating that the higher concentration of the carbon implantation, the higher the retained dose of fluorine after annealing. As the retained fluorine concentration increased, the minority carriers of electrons or holes decreased by more Si-F bond formation, resulting in increasing the sheet resistance. When carbon was implanted with 1.0 × 10^15 ions/cm2, the defective pixel, dark current, transient noise, and flicker were much improved by 25%, 9.4%, 1%, and 28%, respectively compared to no carbon implantation. Therefore, the diffusion of fluorine after annealing could be improved by the carbon implantation leading to improvement of the dark current characteristics."
Dark Current Reduction in Small Pixels
Image Sensors World Go to the original article...
Seoul National University of Science and Technology publishes a MDPI paper "Reduction of Fluorine Diffusion and Improvement of Dark Current Using Carbon Implantation in CMOS Image Sensor" by Su-Young and Sung-Hoon Choa.
"Recently, the demand of a high resolution complementary metal-oxide semiconductor (CMOS) image sensor is dramatically increasing. As the pixel size reduces to submicron, however, the quality of the sensor image decreases. In particular, the dark current can act as a large noise source resulting in reduction of the quality of the sensor image. Fluorine ion implantation was commonly used to improve the dark current by reducing the trap state density. However, the implanted fluorine diffused to the outside of the silicon surface and disappeared after annealing process. In this paper, we analyzed the effects of carbon implantation on the fluorine diffusion and the dark current characteristics of the CMOS image sensor. As the carbon was implanted with dose of 5.0 × 10^14 and 1 × 10^15 ions/cm2 in N+ area of FD region, the retained dose of fluorine was improved by more than 131% and 242%, respectively than no carbon implantation indicating that the higher concentration of the carbon implantation, the higher the retained dose of fluorine after annealing. As the retained fluorine concentration increased, the minority carriers of electrons or holes decreased by more Si-F bond formation, resulting in increasing the sheet resistance. When carbon was implanted with 1.0 × 10^15 ions/cm2, the defective pixel, dark current, transient noise, and flicker were much improved by 25%, 9.4%, 1%, and 28%, respectively compared to no carbon implantation. Therefore, the diffusion of fluorine after annealing could be improved by the carbon implantation leading to improvement of the dark current characteristics."