Femtosecond Time Resolving Sensor

Image Sensors World        Go to the original article...

University of Central Florida, Orlando, and University of Ottawa, Canada, publish an Arxiv.org paper "Single-shot measurement of few-cycle optical waveforms on a chip" by Yangyang Liu, John E. Beetar, Jonathan Nesper, Shima Gholam-Mirzaei, Michael Chini. The time resolution is beyond belief. The light propagates by just 300nm in 1 fs time, less than a wavelength in visible band.

"The measurement of transient optical fields has proven critical to understanding the dynamical mechanisms underlying ultrafast physical and chemical phenomena, and is key to realizing higher speeds in electronics and telecommunications. Complete characterization of optical waveforms, however, requires an optical oscilloscope capable of resolving the electric field oscillations with sub-femtosecond resolution and with single-shot operation. Here, we show that strong-field nonlinear excitation of photocurrents in a silicon-based image sensor chip can provide the sub-cycle optical gate necessary to characterize carrier-envelope phase-stable optical waveforms in the mid-infrared. By mapping the temporal delay between an intense excitation and weak perturbing pulse onto a transverse spatial coordinate of the image sensor, we show that the technique allows single-shot measurement of few-cycle waveforms."


The measurements setup uses a Thorlabs DCC1545M camera based on 8b 1.3MP CMOS sensor with fairly modest spec. At least, some of the nice things do not require high performing sensors:

Go to the original article...

Leave a Reply

css.php