Image Sensors World Go to the original article...
Zhang et al. from MIT recently published a paper titled "Pixel-wise programmability enables dynamic high-SNR cameras for high-speed microscopy" in Nature Communications.
Abstract: High-speed wide-field fluorescence microscopy has the potential to capture biological processes with exceptional spatiotemporal resolution. However, conventional cameras suffer from low signal-to-noise ratio at high frame rates, limiting their ability to detect faint fluorescent events. Here, we introduce an image sensor where each pixel has individually programmable sampling speed and phase, so that pixels can be arranged to simultaneously sample at high speed with a high signal-to-noise ratio. In high-speed voltage imaging experiments, our image sensor significantly increases the output signal-to-noise ratio compared to a low-noise scientific CMOS camera (~2–3 folds). This signal-to-noise ratio gain enables the detection of weak neuronal action potentials and subthreshold activities missed by the standard scientific CMOS cameras. Our camera with flexible pixel exposure configurations offers versatile sampling strategies to improve signal quality in various experimental conditions.
a Pixels within an ROI capture spatiotemporally-correlated physiological activity, such as signals from somatic genetically encoded voltage indicators (GEVI). b Simulated CMOS pixel outputs with uniform exposure (TE) face the trade between SNR and temporal resolution. Short TE (1.25 ms) provides high temporal resolution but low SNR. Long TE (5 ms) enhances SNR but suffers from aliasing due to low sample rate, causing spikes (10 ms interspike interval) to be indiscernible. Pixel outputs are normalized row-wise. Gray brackets: the zoomed-in view of the pixel outputs. c Simulated pixel outputs of the PE-CMOS. Pixel-wise exposure allows pixels to sample at different speeds and phases. Two examples: in the staggered configuration, the pixels sample the spiking activity with prolonged TE (5 ms) at multiple phases with offsets of (Δ = 0, 1,25, 2.5, 3.75 ms). This configuration maintains SNR and prevents aliasing, as the interspike interval exceeding the temporal resolution of a single phase is captured by phase-shifted pixels. In the multiple exposure configuration, the ROI is sampled with pixels at different speeds, resolving high-frequency spiking activity and slow varying subthreshold potentials that are challenging to acquire simultaneously at a fixed sampling rate. d The PE-CMOS pixel schematic with 6 transistors (T1-T6), a photodiode (PD), and an output (OUT). RST, TX, and SEL are row control signals. EX is a column signal that controls pixel exposure. e The pixel layout. The design achieves programmable pixel-wise exposure while maximizing the PD fill factor for high optical sensitivity.
Open access article link: https://www.nature.com/articles/s41467-024-48765-5
Leave a Reply